Kinematics Problems

1. You ride your bike for 1.5 h at an average velocity of $10 \mathrm{~km} / \mathrm{h}$, then for 30 min at $15 \mathrm{~km} / \mathrm{h}$. What is your average velocity? $(11.25 \mathrm{~km} / \mathrm{h})$
2. Plot a velocity-time graph using the information in the table below, then answer the questions.

Velocity vs. Time			
Time (s)	Velocity $(\mathrm{m} / \mathrm{s})$	Time (s)	Velocity $(\mathrm{m} / \mathrm{s})$
0.0	4.0	7.0	12.0
1.0	8.0	8.0	8.0
2.0	12.0	9.0	4.0
3.0	14.0	10.0	0.0
4.0	16.0	11.0	-4.0
5.0	16.0	12.0	-8.0
6.0	14.0		

a) During which time interval is the object speeding up? Slowing down? (speeding up from 0 to $4.0 s$, slowing down from $5.0 s$ to $10 s$)
b) At what time does the object reverse direction? (10 s)
c) How does the average acceleration of the object in the interval between 0 and $2 s$ differ from the average acceleration in the interval between 7 s and 12 s ? $\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right.$; $-4.0 \mathrm{~m} / \mathrm{s}^{2}$)
3. Find the uniform acceleration that causes a car's velocity to change from $32 \mathrm{~m} / \mathrm{s}$ to $96 \mathrm{~m} / \mathrm{s}$ in an 8.0 s period. $\left(8.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
4. A car with a velocity of $22 \mathrm{~m} / \mathrm{s}$ is accelerated uniformly at the rate of $1.6 \mathrm{~m} / \mathrm{s}^{2}$ for 6.8 s . What is its final velocity? $(33 \mathrm{~m} / \mathrm{s})$
5. A supersonic jet flying at $145 \mathrm{~m} / \mathrm{s}$ is accelerated uniformly at the rate of $23.1 \mathrm{~m} / \mathrm{s}^{2}$ for 20.0 s .
a) What is its final velocity? $(607 \mathrm{~m} / \mathrm{s})$
b) The speed of sound in air is $331 \mathrm{~m} / \mathrm{s}$. How many times the speed of sound is the plane's final speed? (1.83)
6. Determine the final velocity of a proton that has an initial velocity of $2.35 \times 10^{5} \mathrm{~m} / \mathrm{s}$, and then is accelerated uniformly in an electric field at the rate of $-1.10 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$ for $1.50 \times 10^{-7} \mathrm{~s} .\left(7.0 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)$
7. Determine the displacement of a plane that is uniformly accelerated from $66 \mathrm{~m} / \mathrm{s}$ to $88 \mathrm{~m} / \mathrm{s}$ in $12 \mathrm{~s} .(924 \mathrm{~m})$
8. How far does a plane fly in $15 s$ while its velocity is changing from $145 \mathrm{~m} / \mathrm{s}$ to $75 \mathrm{~m} / \mathrm{s}$ at a uniform rate of acceleration? (1650 m)
9. A car moves at $12 \mathrm{~m} / \mathrm{s}$ and coasts up a hill with a uniform acceleration of $-1.6 \mathrm{~m} / \mathrm{s}^{2}$.
a) How far has it traveled after 6.0 s ? (43.2 m)
b) How far has it traveled after $9.0 s$? Explain. ($43.2 m$)
10. A plane travels 500 m while being accelerated uniformly from rest at the rate of $5.0 \mathrm{~m} / \mathrm{s}^{2}$. What final velocity does it reach? $(71 \mathrm{~m} / \mathrm{s})$
11. A race car can be slowed with a constant acceleration of $-11 \mathrm{~m} / \mathrm{s}^{2}$.
a) If the car is going $55 \mathrm{~m} / \mathrm{s}$, how many meters will it take to stop? (137.5 m)
b) How many meters will it take to stop a car going twice as fast? (550 m)
12. An engineer must design a runway to accommodate airplanes that must reach a ground velocity of $61 \mathrm{~m} / \mathrm{s}$ before they can take off. These planes are capable of being accelerated uniformly at the rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$.
a) How long will it take the planes to reach takeoff speed? (24.4 s)
b) What must be the minimum length of the runway? (744 m)
13. Engineers are developing new types of guns that might someday be used to launch satellites as if they were bullets. One such gun can give a small object a velocity of $3.5 \mathrm{~km} / \mathrm{s}$, moving it through only 2.0 cm .
a) What acceleration does the gun give this object? $\left(3.1 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}\right)$
b) Over what time interval does the acceleration take place? $\left(1.1 \times 10^{-5} \mathrm{~s}\right)$
14. Highway safety engineers build soft barriers so that cars hitting them will slow down at a safe rate. A person wearing a seat belt can withstand an acceleration of $-300 \mathrm{~m} / \mathrm{s}^{2}$. How thick should barriers be to safely stop a car that hits a barrier at $110 \mathrm{~km} / \mathrm{h} ?(1.56 \mathrm{~m})$
15. A baseball pitcher throws a fastball at a speed of $44 \mathrm{~m} / \mathrm{s}$. The acceleration occurs as the pitcher holds the ball in his hand an moves it through an almost straight-line distance of 3.5 m . Calculate the acceleration, assuming it is uniform. ($277 \mathrm{~m} / \mathrm{s}^{2}$)
16. Rocket powered sleds are used to test the responses of humans to acceleration. Starting from rest, one sled can reach a speed of $444 \mathrm{~m} / \mathrm{s}$ in 1.80 s and can be brought to a stop again in 2.15 s .
a) Calculate the acceleration of the sled when starting. $\left(247 \mathrm{~m} / \mathrm{s}^{2}\right)$
b) Calculate the acceleration of the sled when braking. $\left(-207 \mathrm{~m} / \mathrm{s}^{2}\right)$
17. (Challenging) The driver of a car going $90.0 \mathrm{~km} / \mathrm{h}$ suddenly sees the lights of a barrier 40.0 m ahead. It takes the driver 0.75 s to apply the brakes, and the average acceleration during braking is $-10.0 \mathrm{~m} / \mathrm{s}^{2}$.
a) Determine whether the car hits the barrier.
b) What is the maximum speed at which the car could be moving and not hit the barrier 40.0 m ahead? Assume the rate of acceleration is the same. $(22 \mathrm{~m} / \mathrm{s})$
18. (Challenging) As a traffic light turns green, a waiting car starts with a constant acceleration of $6.0 \mathrm{~m} / \mathrm{s}^{2}$. At the instant the car begins to accelerate, a truck with a constant velocity of $21 \mathrm{~m} / \mathrm{s}$ passes in the next lane.
a) How far will the car travel before it overtakes the truck? (147 m)
b) How fast will the car be traveling when it overtakes the truck? ($42 \mathrm{~m} / \mathrm{s}$)

